Human DNA polymerase kappa bypasses and extends beyond thymine glycols during translesion synthesis in vitro, preferentially incorporating correct nucleotides.

نویسندگان

  • Paula L Fischhaber
  • Valerie L Gerlach
  • William J Feaver
  • Zafer Hatahet
  • Susan S Wallace
  • Errol C Friedberg
چکیده

Human polymerase kappa (polkappa), the product of the human POLK (DINB1) gene, is a member of the Y superfamily of DNA polymerases that support replicative bypass of chemically modified DNA bases (Ohmori, H., Friedberg, E. C., Fuchs, R. P., Goodman, M. F., Hanaoka, F., Hinkle, D., Kunkel, T. A., Lawrence, C. W., Livneh, Z., Nohmi, T., Prakash, L., Prakash, S., Todo, T., Walker, G. C., Wang, Z., and Woodgate, R. (2001) Mol. Cell 8, 7-8; Gerlach, V. L., Aravind, L., Gotway, G., Schultz, R. A., Koonin, E. V., and Friedberg, E. C. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 11922-11927). Polkappa is shown here to bypass 5,6-dihydro-5,6-dihydroxythymine (thymine glycol) generated in two different DNA substrate preparations. Polkappa inserts the correct base adenine opposite thymine glycol in preference to the other three bases. Additionally, the enzyme correctly extends beyond the site of the thymine glycol lesion when presented with adenine opposite thymine glycol at the primer terminus. However, steady state kinetic analysis of nucleotides incorporated opposite thymine glycol demonstrates different misincorporation rates for guanine with each of the two DNA substrates. The two substrates differ only in the relative proportions of thymine glycol stereoisomers, suggesting that polkappa distinguishes among stereoisomers and exhibits reduced discrimination between purines when incorporating a base opposite a 5R thymine glycol stereoisomer. When extending beyond the site of the lesion, the misincorporation rate of polkappa for each of the three incorrect nucleotides (adenine, guanine, and thymine) is dramatically increased. Our findings suggest a role for polkappa in both nonmutagenic and mutagenic bypass of oxidative damage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of human DNA polymerase as an extender in translesion synthesis

Human DNA polymerase (Pol) is a member of the Y family of DNA polymerases. Unlike Pol , another member of this family, which carries out efficient translesion synthesis through various DNA lesions, the role of Pol in lesion bypass has remained unclear. Recent studies, however, have indicated that Pol is a proficient extender of mispaired primer termini on undamaged DNAs and also on cis-syn thym...

متن کامل

A Nuclear Family A DNA Polymerase from Entamoeba histolytica Bypasses Thymine Glycol

BACKGROUND Eukaryotic family A DNA polymerases are involved in mitochondrial DNA replication or translesion DNA synthesis. Here, we present evidence that the sole family A DNA polymerase from the parasite protozoan E. histolytica (EhDNApolA) localizes to the nucleus and that its biochemical properties indicate that this DNA polymerase may be involved in translesion DNA synthesis. METHODOLOGY ...

متن کامل

Replication Past the γ-Radiation-Induced Guanine-Thymine Cross-Link G[8,5-Me]T by Human and Yeast DNA Polymerase η

γ-Radiation-induced intrastrand guanine-thymine cross-link, G[8,5-Me]T, hinders replication in vitro and is mutagenic in mammalian cells. Herein we report in vitro translesion synthesis of G[8,5-Me]T by human and yeast DNA polymerase η (hPol η and yPol η). dAMP misincorporation opposite the cross-linked G by yPol η was preferred over correct incorporation of dCMP, but further extension was 100-...

متن کامل

Human DNA polymerase kappa forms nonproductive complexes with matched primer termini but not with mismatched primer termini.

Human DNA polymerase kappa (pol kappa) is a member of the Y family of DNA polymerases that function in translesion synthesis. It synthesizes DNA with moderate fidelity and does not efficiently incorporate nucleotides opposite DNA lesions. Pol kappa has the unusual ability to efficiently extend from mismatched primer termini, and it extends readily from nucleotides inserted by other DNA polymera...

متن کامل

A role for DNA polymerase θ in promoting replication through oxidative DNA lesion, thymine glycol, in human cells.

The biological functions of human DNA polymerase (pol) θ, an A family polymerase, have remained poorly defined. Here we identify a role of polθ in translesion synthesis (TLS) in human cells. We show that TLS through the thymine glycol (TG) lesion, the most common oxidation product of thymine, occurs via two alternative pathways, in one of which, polymerases κ and ζ function together and mediate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 40  شماره 

صفحات  -

تاریخ انتشار 2002